BiBiWS
WebService Workshop

Jan Krijger jkrueger@techfak.uni-bielefeld.de
Henning Mersch hmersch@techfak.uni-bielefeld.de

8. Oktober 2004

1 BiBiWS Development Guide

This Development Guide will show developers the steps to develop a WebService on
BiBiServ using the BiBiWS framework. First, basic ideas and functions of a BiBiWS
WebService are presented briefly, which are neccessary for understanding the con-
cept. Afterwards to the development environment will be introduced. For getting into
the idea of BiBiWS WebServices, a very brief introduction will clarify the workflow of
development and how to get it working. They are followed by a detailed description
of the source code of the default WebService for doing complex things.

Just for clarification:
A developer in this document is a person, who develops a bioinformatic tool and
would like to provide a world-wide accessible WebService for this tool. A user is a
person, who uses such a WebService.

1.1 Basics of a WebService

A WebService contains two sides: Client and server. In general a WebService is a
synchronous data exchange service of two points connected via a network. This means
after a short time (less than the http timeout, which normally is 300 seconds) an
answer of the WebService server is required.

Bioinformatic programs normally run much longer than five minutes. To avoid pro-
blems with timeout and changes of IP-Address client, BiBiWS uses a technic called
Request and reply with polling: First the client side submits a job with the required
data (progra parameters and data etc.) and immediately gets an id after the job was
started which normally takes some seconds (name convention request ().
Afterwards the client side is able to get the result using this id. If the computation of
the program is not finished, the client side gets back a code with enhanced informa-
tion. Otherwise the result of the call is returned (name convention response()).

This polling technique completely avoids problems with timeouts. The user can
even request the results hours or days later - or from another host, just with know-
ledge of the id. Although there are asynchronous WebService projects, they have hard
restrictions.

4 Chapter 1. BiBiWS Development Guide

server/
<PN>.wsdd for generating the WSDL of the WebService and for deploying on the tomcat
WEB-INF/ for including to WAR File
build.xml ant build file for building the web service
config/ properties files
dist/ distribution WAR and WSDL files
doc/ documentation of project server side
doc/api automatical generated Java API
lib/ additional libraries
src/ source code

Figure 1.1: Overview of server/ directory

1.2 Description of the project directory

Here are described the two basic subdirectories of the created default project.

Also the WebService global installation is described to get the default WebService
to run. Understanding this is important to get the basic ideas at the following brief
introduction.

1.2.1 Project directory

The BiBiServ Administrator Team will set up a project on /vol/bibidev/<PN>/, which
already includes a running example of a BiBiWS WebService.

It produces a simple string of given length, so a pretty simple example, which the
developer can modify to his or her own requirements.

All files and information have to be located in this directory and will be installed from
this directory.

There are two subdirectories:

server/ - WebService server side implementation

Subdirectory server/ contains all required files for compiling and installing the server
side of a WebService. Figure 1.1 gives an overview of the server/ directory. We will
discuss the individual elements later in Chapter 1.4.1

client/ - command line WebService client side

Subdirectory client/ represents a simple command line client written in Java for the
WebService server side. Figure 1.2 shows the contents of this directory. Discussion in
detail will follow in Chapter 1.4.3

1.3. Brief introduction to the BiBiWS WebServices 5

client/
Request. java source of Request part of client
Response. java source of Response part of client
example.fas sample sequence data in Fasta for testing purpose
setclasspath.sh shell script for setting the correct CLASSPATH in current shell

Figure 1.2: Overview of client/ directory

Client WS Server
T T
| |

|
requiest(data) > !
User D
¢ - - - - - i - - - - - -
|
|
|
*responsef(id) >
- - — — — esuUlt - — — - D
|
until [statuscode == 600]
T
|

X

Figure 1.3: Basic flow of an WebService call of BiBiWS.

1.3 Brief introduction to the BiBiWS WebServices

This is a very basic and rudimentary description of how a BiBiWS WebService works.

It is neither complete nor describes the whole source code, which is described later
(Chapter 1.4). It is just a short description of the most important ideas of a BiBiWS
WebService.

The example WebService gets an Integer ,length" as input and creates a String of
x's of the given length, which is returned to the user.

Figure 1.3 shows the basic flow of a call at the created WebService server side.
After ,starting" the program by calling request () with the data to progress and getting
an id, the client can poll for the result by calling the response () method with this id.
Statuscodes (see Appendix 2) with reason phrases are used to represent the current
status.”

Tstatuscode 600 indicates successfully finished

6 Chapter 1. BiBiWS Development Guide

I
Project Side |, BiBiWS Side
|
|
|
|
I
|
|
® w
create |
EEEEE— TemplateWSInterface |
request(data) \
‘\ Status
I
@
i
| -
\y updale\ T~ N
- TemplateWSImplementation
return id P P \®

call as Thread TemplateWSProcessing —————=| SGECall

A
start job \

Figure 1.4: Basic flow of request call on server side.

1.3.1 Installing and running the default WebService of a new project

Very litte work has to be done for getting the default BiBiWS WebService of a new
created project to run:

Step 1: Creating a new project <LOGIN>WS in your homedirectory is done by calling
/vol/bibiadm/bin/makeProjectHOBIT

Step 2: Go to the project server directory in “/<LOGIN>WS/server and type ant deploy_ws.
The Server side will be installed. Your default WebService is ready !

Step 3a: Go to the project client directory in ~/<LOGIN>WS/client, set the
CLASSPATH by typing . ./setclasspath.sh.

Step 3b: Compile the Java sources calling javac *.java

Step 3c: Type java Request <Integer> for calling the sample webservice and get an
id.

Step 3d: Type java Response <id of request>and get the string of requested length
(or get a status, so you have to try again later).

Step 4: As you see - everything works fine. You are welcome to start modifying this
default project to support your own bioinformatic tool

1.3.2 Server Side

Figure 1.4 shows the basic flow of objects, if a request () call comes in.
The ,project side" represents classes, which have to be modified by the developer

1.3. Brief introduction to the BiBiWS WebServices 7

where the BiBiWS side is the connection to the BiBiWS library.
The Status object is representing the current status while processing, so every class
can modify this.

The source code is located at the subdirectory server/src/.

Here is briefly described, what has to be changed for getting your own tool running.

O The Interface class defines the types of incoming and outgoing data. Change the
parameters of the request () method to your requirements.

O The Implementation class of the Interface. Again the parameters of request ()
have to be changed. Also parameters have to be checked.

O request() returns the id of the WebService call.

00 Before returning the id the processing class is started as thread. Change the
constructor for matching your parameters. Within the run() method of the pro-
cessing class prepare the call of your tool by writing data to spooldirectory and
convert parameters to command line parameters.

O Also at the Processing class is the useage of SGECall, which executes your tool.
This has to be modified to your personal tool.

The only modification at the response () method within Interface and Implementa-

tion classes are: Change the returned data type and read the result from spooldirectory
for returning.

1.3.3 Client Side

Modify arguments used for your own WebService in client/Request. java. Also WebSer-
vice parameters and processing data has to be changed.

1.3.4 Install your WebService

After modifying the default WebService application, it has to be installed.

step 1: Server side: call ant within the server/ directory. This will compile and build
WebService and build the WSDL Specification.

step 2: Client side: recompile the Java sources located at the client directory.

8 Chapter 1. BiBiWS Development Guide

1.3.5 Testing your WebService

Change to the project client directory located in ~/<LOGIN>WS/client. Now call your
request program with your arguments to get an ID. Call the java Response <id get
by request>.

1.4 Detailed introduction to the BiBiWS WebServices

This section explains all files and directories of the default project. It gives a developer
a detailed overview of the source code of the default project.

After the brief introduction at Chapter 1.3, this gives the possibility to do more com-
plex processing for development of a BiBiWS webservice.

The location of server side BiBiWS APl is [1.

1.4.1 Server side of a BiBiWS tool

The server/ directory contains several files and subdirectories, which are explained
here. (see Figure 1.1 for overview)

<PN>.wsdd

The Web Service Deployment descriptor (short WSDD) is required to generate the
WebService WAR File. Basically it just describes the class Axis has to bind to and
methods to export.? Normally developers don't have to change anything here, except
one would like to add methods or change names of methods.

WEB-INF/

This directory will be part of the WAR file to release. If specific jars or other files are
neccessary for the tool - place them here in the 1ib/ subdirectory.

Two libraries are already included in every WebService, because of tomcat problems
otherwise.

Normally developer don't have to change anything here.

build.xml

On the server side development ant is used for processing. There are some ant targets
for developers to use, described in Table 1.1.

2replace methods to * for exporting all methodes

1.4. Detailed introduction to the BiBiWS WebServices 9

redeploy_ws | (default) Will uninstall and install WebService
deploy_ws Will install and start WebService

(use this at 1st time installation)
undeploy_wst | Will remove and uninstall WebService

reload_ws Will reload WebService on BiBiTest WebService Server
clean_dist Will tidy up the project directory
api Will generate the Java-doc api to doc/api/

Table 1.1: BiBiServ Developer commands of server/ subdirectory

toolname=TEMPLATEWS
max.submit=100
statuscode.701=Input Error - Tool spec explanation

statuscode.701.internal=Input Error - Tool spec internal information

Figure 1.5: default tool.properties file

config/

config/ includes two properties files.
First there is tool.properties. (see Figure 1.5) there are some properties configured
on creation of the default project.

toolname is your <PN>

max.submit is maximum submission characters over all parameters accepted by WebSer-
vice

statuscode.701 is an example of how to set a client side statuscode. This will over-
ride the description of the default BiBiStatuscodes if defined there. (see Table
2.2 for complete listing of predefined BiBiStatuscodes)

statuscode.701.internal is the corresponding internal description, which will go
to the log files additionally, but never occur outside.

Second there is the 1og4j.properties, which configures logging to /vol/log/<PN>/uss.log.
See log4j manual for details []

src/

All classes belonging to a WebService are included at the package
de/unibi/techfak/bibiserv/<PN>.

Here are the basic constraints of the classes:

AXIS requires an interface to the implementation of the methods called by WebSer-
vice. The implementation class creates an id and calls the processing class as a thread
with checking for maximum submitting characters before. After starting the thread, it

10 Chapter 1. BiBiWS Development Guide

abstract String request(Hashtable params) throws TEMPLATEWSException;

2 abstract String response(String id) throws TEMPLATEWSException;

Figure 1.6: client to call request () on WebService

public String request(Hashtable params) throws TEMPLATEWSException {
WSSTools wsstools = new WSSTools(this.getClass().getResourceAsStream("/tool.properties"));
Status status = new Status(wsstools);
TEMPLATEWSProcessing proc = new TEMPLATEWSProcessing(wsstools,status,
(new Integer(params.get("length").toString())));

Dw N e

Thread t = new Thread(proc);
t.start();
return status.getId();

W N o o

}

Figure 1.7: Lines from <PN>Implementation. java

returns the id to the client side. The processing class itself calls the tool after prepro-
cessing and before postprocessing by developer's implementation.
Following is the detailed description of classes:

<PN>Interface.java The interface definition in Figure 1.6 shows, that every me-
thod to provide for a WebService call has to be defined here.
The request method will return an id and get data for starting the WebService call.
This example does not get any data, but only a length as parameter.
The response method gets an id and return results.

<PN>Implementation. java Figure 1.7 shows the request() method for sub-
mitting a job to WebService. After creating a new status object (line 3) the proces-
sing class is called as a thread. (line 4-6) request returns an id (line 7) for calling
response () after a while by the client side.
The response method just requests the current status of the submitted id (line 3 at
Figure 1.8). If statuscode is 600 the job has finished and the result can be read (line 5).

public String response(String id) throws TEMPLATEWSException {
WSSTools wsstools = new WSSTools(this.getClass().getResourceAsStream("/tool.properties"));
Status status = new Status(wsstools,id);
if (status.getStatuscode() == 600) { // ready

//read data and warp output to HOBIT Standards (see "Converting...")

} else {
throw new TEMPLATEWSException(status);

© 0 N O O W N

Figure 1.8: Lines from <PN>Implementation.java

1.4. Detailed introduction to the BiBiWS WebServices 11

1 public void run() {

2 status.setStatuscode(602);

3 status.setStatuscode(603);

4 SGECall call = new SGECall(wsstools, status);

5 if(!call.call("java -cp /vol/bibiwssv/webapps/templatehobit/WEB-INF/classes
de.unibi.techfak.bibiserv.templatehobit.PerformanceTest "+length))

6 wsstools.log("error","unsuccessful SGECall...Processing aborted");

7 return;

8

9 status.setStatuscode (605) ;

10 wsstools.writeSpoolFile("stdout-log.txt",call.getStdOutStream());

11 wsstools.writeSpoolFile("stderr-log.txt",call.getStdErrStream());

12 status.setStatuscode(600);

13 }

Figure 1.9: Lines from <PN>Processing. java

1 public TEMPLATEWSException(Status status)
2 public TEMPLATEWSException(int statuscode, String description)

Figure 1.10: client to call request on WebService

Afterwards the result has to be converted for returning (line 6/7, see Chapter 1.4.2) .

If statuscode is different, response just informs the client side by returning an Axis
fault (throwing a <PN>Exception, which is converted by the AXIS library).

<PN>Processing. java (Figure 1.9) After setting to statuscode 602 the preproces-
sing can be done, if required (line 2). Statuscode 603 means main processing, so the
command execution is done (line 5), which returns after the job has finished or failed.
Following line 9 there is the phase of postprocessing. In this example the STDOUT and
STDERR streams of the execution call are written to the spooldirectory, because the
example application prints the result to STDOUT. After all this is done, the statuscode
is set to ,finished" - 600 (line 12), which indicates a possible return of the result, if the
client asks for it.

<PN>Exception.java Due to the fact that AXIS does not accept a general
BiBiException class, which is mapped to a soap_fault on error, every WebService
has to have its own exception to throw.
In Figure 110 there are two constructors to create this exception. Either a status ob-
ject can be given (line 1, will take statuscode and description from status object) or
soap_fault and soap_description is set manually (line 2). So, normally, the devel-
oper has nothing to change here.

PerformanceTest. java This class is just a standalone script, which is called by the
default WebService as an example. So it is not documented here and the developer
should replace the execution of this class to their own tool's execution.

12 Chapter 1. BiBiWS Development Guide

String xmlString = incoming data;
DocumentBuilder docBuilder = factory.newDocumentBuilder();
Document doc = docBuilder.parse(new InputSource(new StringReader (xmlString)));

sw N e

String stringOfLength = doc.getElementsByTagName ("stringOfLength").item(1).getNodeValue()

Figure 1.11: create a DOM Object and access data

1.4.2 Converting result from/to specified XMLSchemas

The HOBIT-Projekt uses different existing XMLSchemas for representing data. This
XMLSchemas describe formats to represent biological data in XML. If a program ac-
cepts or returns data in one of these standards, another tool can handle this data
without converting. This way tools can be combined as chains.

So a BiBiWS WebService supporting HOBIT standards needs to accept and to return
data within one of these XMLSchemas. It's up to the developer's decision which are
best matching the tool's in- and output.

Here is a description how to convert data.

Converting data according to a XMLSchema to tool's input format.

While the example WebService just takes a parameter, but no further input data, it is
not included at the example.

Figure 111 shows how to retrieving incoming XML. One just has to create a DOM
Object from the incomming XML String and access the included data.

See [] for further informations on the DOM library.

Converting tool's result format according to a XMLSchema

Figure 1.4.2 shows a basic conversion of result data to XML according to a XMLSche-
ma.

At this WebService, we have an example XMLSchema
http://bibiserv.techfak.uni-bielefeld.de/xsd/TemplateExample.xsd to follow.
Line 1 and 2 gets the data from the spooldirectory.

Developer have to create a DOM object, including namespaces (lines 4-9), which is
serializeable simple to return as string.

Lines 10 to 12 appends the returned string and lines 13 to 15 the log message.
Afterwards the serialization is done, which does not have to be modified. The gene-
rated string is returned to the client of the WebService call.

See [] for further informations on the DOM library.

1.4. Detailed introduction to the BiBiWS WebServices 13

[SNV S

© 00 N O

10
11
12
13
14
15

String stringOflength = new String(wsstools.readSpoolFile("stdout-log.txt"));
String logmsg = new String(wsstools.readSpoolFile("stderr-log.txt"));
//Creating DOM
DOMImplementationImpl impl = new DOMImplementationImpl();
Document domDocument =

impl.createDocument ("de:unibi:techfak:bibiserv:templateexample", "dataTypeTest", null);
Element dataTypeTestElement = domDocument.getDocumentElement () ;
dataTypeTestElement.setAttribute("xmlns", "de:unibi:techfak:bibiserv:templateexample");
dataTypeTestElement.setAttribute("xmlns:xsi", "http://www.w3.org/2001/XMLSchema-instance");
dataTypeTestElement.setAttribute("xsi:schemalocation",

"de:unibi:techfak:bibiserv:templateexample

http://bibiserv.techfak.uni-bielefeld.de/xsd/TemplateExample.xsd") ;
Element stringOfLengthElement = domDocument.createElement ("stringOfLength") ;
dataTypeTestElement.appendChild(stringOfLengthElement) ;
string0fLengthElement .appendChild(domDocument.createTextNode (stringOflength));
Element logmsgElement = domDocument.createElement("logmsg");
dataTypeTestElement .appendChild(logmsgElement) ;

logmsgElement . appendChild (domDocument . createTextNode (logmsg)) ;

Figure 1.12: create a DOM Object and fill with result data

1.4.3 Command line client for testing server side

Source of the client side is mostly simple and (hopefully) self explaining.

14

Chapter 1. BiBiWS Development Guide

2 BiBiWS - Predefined statuscodes

Like the (for now) underlaying http protocol, BiBiWS gives back statuscodes with re-
ason phrases to inform the user if the requested data isn't returned.

For not getting confused with http statuscodes, BiBiWS uses statuscodes beginning
with 6 and 7, while http uses statuscodes beginning with 1 to 4 (see RFC 2616
[1 for details).

This chapter gives an overview of the predefined statuscodes by BiBiWS.
They can be overridden by the tool specific statuscodes, simply by giving same num-
bers at the tool specific properties file.
There are some general conventions explained in Table 2.1 to follow, which are requi-
red, because BiBiWS decides on these rules whether an error occurred, the WebSer-
vice finished or user has to wait.
Some statuscodes can be used on several reasons and it might be hard for the devel-
oper to decide, where it comes from. So all statuscodes may have a internal descrip-
tion (.internal at the properties file) , which is never going outside the server. It is
just for debugging and development of the tools on server side. It can be set indivi-
dual to enhance the normal description, which is presented to the user.

Predefined statuscodes occurring on server side are explained in Table 2.2 and the
client side ones are described in Table 2.3. They begin in general with a c, so the
statuscodes theirself can be as equal as possible on both sides.

Statuscode Description

600 WebService call is finished successfully, result ready.

6xx (beginning with 6) | WebService call is not yet finished. xx gives more information.

700 WebService call is in general error state. This fall-back,
Should be avoided by developer to give more information.
70x (beginning with 70) | User errors.

Submitted data is NOT processed by the WebService call.
72x (beginning with 72) | Errors relaying to

BiBiServ Administrator Team or developer of the tool.
User can inform and/or retry later.

Table 2.1: General BiBiWS conventions for statuscodes

15

16 Chapter 2. BiBiWS - Predefined statuscodes
Statuscode | Description
600 Finished OK
601 Submitted
602 PreProcessing
603 Processing: Pending
604 Processing: Running
605 Postprocessing
700 General Error
701 Input Format Error
702 Input Size Error (submitted data to large)
703 Exec Error (executable gives enhanced errormsg)
704 RAM Size Error
705 CPU Time Error
706 ID unknown (or older than 30 days)
707 ID data deleted (older than 3 days)
708 Mail Check Failed (notification email is not valid)
720 WSS Server Busy
721 Internal Resource Error
internal description: Internal Resource Error (Grid)
722 Internal Resource Error
internal description: Internal Resource Error (DB)
723 Internal Resource Error
internal description: Internal Resource Error (HDDfull)
724 Internal Resource Error
internal description: Internal Resource Error (WS-Error)
725 Internal Resource Error
internal description: Internal Resource Error (BiBiWSS-Lib Error)
731 Resource Busy
internal description: Resource Busy (Grid)
732 Resource Busy
internal description: Resource Busy (DB)
733 Resource Busy

internal description: Resource Busy (HDDfull)

Table 2.2: Predefined BiBiWS statuscodes on server side

17

Statuscode | Description

c600 Ready - got result

c601 Submitted

c700 General unknown error

c701 Input Error

c702 Input size too large

c708 Mail Check Failed (notification email is not valid)

c723 Internal Error - BiBiServ Team is informed, please try again later.
internal description: Internal Resource Error (HDDfull)

c724 Internal Error - BiBiServ Team is informed, please try again later.

internal description: Internal Resource Error (WS-Error)

Table 2.3: Predefined BiBiWS statuscodes on client side

18

Chapter 2. BiBiWS - Predefined statuscodes

Literaturverzeichnis

[ROSE] Rose, Marshall T.: Beep - The Definition Guide O'Reilly, 2002

[OEST] Oestereich, B.: Objektorientierte Softwareentwicklung: Analyse und Design mit
der UML Oldenbourg, 2004

[CHAP] Chappell D. and Jewell, T.: Java Web Services O'Reilly, 2002
[RAY] Ray, R.J. and Kulchenko, P.: Programming Web Services with Perl O'Reilly, 2002
[TANE] Tanenbaum, A.S.: Computer Networks Prentice Hall, 1996

[HERM] Hermjakob, Henning et. al.: The HUPO PSI Molecular Interaction Format -
A community standard for the representation of protein interaction data Nature
Biotechnology, 2004

[MCL] McLaughlim, B.: Java and XML O'Reilly, 2001

[CORBA] Sun Microsystems: Introduction to CORBA
31.08.2004 <http://java.sun.com/developer/onlineTraining/corba/corba.html >

[XMLRPC] XML-RPC Home Page
31.08.2004 <http://www.xmlrpc.com/ >

URMI] David Reilly: Introduction to Java RMI
31.08.2004 <http://www.javacoffeebreak.com/articles/javarmi/javarmi.html >

[WSDL] W3C: Web Services Description Language (WSDL) 1.1
31.08.2004 <http://www.w3.org/TR/wsd| >

[XML] W3C: Extensible Markup Language (XML)
31.08.2004 <http://www.w3c.org/XML/ >

[XMLSCHEMA] W3C: XML Schema
31.08.2004 <http://www.w3.org/XML/Schema >

[HOBIT] HOBIT-Projekt
31.08.2004 <http://mips.gsf.de/proj/hobit/ >

[PSIT HUPO: Proteomics Standards Initiative
31.08.2004 <http://psidev.sf.net/ >

19

http://java.sun.com/developer/onlineTraining/corba/corba.html
http://www.xmlrpc.com/
http://www.javacoffeebreak.com/articles/javarmi/javarmi.html
http://www.w3.org/TR/wsdl
http://www.w3c.org/XML/
http://www.w3.org/XML/Schema
http://mips.gsf.de/proj/hobit/
http://psidev.sf.net/

20 Literaturverzeichnis

[PERL] O'Reilly: Perl - The Source for Perl
31.08.2004 <http://www.perl.com/ >

JAVA] Sun Microsystems: Java
31.08.2004 <http://www.java.com/ >

[APACHE] The Apache Software Foundation
31.08.2004 <http://www.apache.org >

[APACHE] The Apache Software Foundation: Apache http Server
31.08.2004 <http://httpd.apache.org/http/ >

[TOMCAT] The Apache Software Foundation: Apache Jakarta Tomcat
31.08.2004 <http://jakarta.apache.org/tomcat >

[AXIS] The Apache Software Foundation: AXIS
31.08.2004 <http://ws.apache.org/axis/

[AXISUM] The Apache Software Foundation: AXIS User's Manual 31.08.2004
<http://ws.apache.org/axis/java/user-guide.html

[CEBITEC] Center for Biotechnology (CeBiTec)
31.08.2004 <http://www.cebitec.uni-bielefeld.de/ >

[DFG] Deutsche Forschungsgemeinschaft
31.08.2004 <http://www.dfg.de >

[HELMHOLTZ] Helmholtz Association of National Research Centres
31.08.2004 <http://www.helmholtz.de/ >

[DRMAA] Distributed Resource Management Application APl Working Group
31.08.2004 <http://www.drmaa.org/ >

[UDDI] OASIS UDDI
31.08.2004 <http://www.uddi.org/ >

[RFC2616] RFC 2616: Hypertext Transfer Protocol - HTTP/1.1
31.08.2004 <http://www.w3.org/Protocols/rfc2616/rfc2616.html >

[WSDEF] Web Services Activity
31.08.2004 <http://www.w3.0rg/2002/ws/ >

[JCP] Java Comunity Process - Homepage 31.08.2004 <http://jcp.org/en/home/index
>

[SOAP] W3C: SOAP Version 1.2 31.08.2004 <http://www.w3.org/TR/soap12-part1/
>

[HTTP] W3C: Hypertext Transfer ~ Protocol - HTTP/11 31.08.2004
<http://www.w3.org/Protocols/rfc2616/rfc2616.html >

http://www.perl.com/
http://www.java.com/
http://www.apache.org
http://httpd.apache.org
http://jakarta.apache.org/tomcat
http://ws.apache.org/axis/
http://ws.apache.org/axis/java/user-guide.html
http://www.cebitec.uni-bielefeld.de/
http://www.dfg.de
http://www.helmholtz.de/
http://www.drmaa.org/
http://www.uddi.org/
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/2002/ws/
http://jcp.org/en/home/index
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/Protocols/rfc2616/rfc2616.html

Literaturverzeichnis 21

[DOM] W3C: Document Object Model (DOM) 31.08.2004
<http://www.w3.0rg/DOM/ >

[ADA1] Adams, H.: Asynchronous operations and WebService, Part 1:
A primer on asynchrnous trasnactions. 31.08.2004 <http://www-
106.ibm.com/developerworks/library/wsasynch1/ >

[ADA2] Adams, H.: Asynchronous operations and WebService, Part 2: Program-
ming patterns to build asynchronous WebService. 31.08.2004 <http://www-
106.ibm.com/developerworks/library/wsasynch2/ >

[SGEUM] Sun Mircosystems: Grid Engine 31.08.2004
<http://gridengine.sunsource.net/ >

[SGEUM] Sun Mircosystems: Sun grid engine user manual
31.08.2004 <http://gridengine.sunsource.net/project/gridengine-

download/SGE53AdminUserDoc.pdf?content-type=application/pdf>

[XHTML] W3C: XHTML 1.0 - The Extensible HyperText Markup Language
31.08.2004 <http://www.w3.org/ TR/xhtml1/ >

[LOG4P] The log4perl project
31.08.2004 <http://log4perl.sourceforge.net/ >

[LOG4J] Apache Software Foundation: Logging Services
31.08.2004 <http://logging.apache.org/log4j/ >

[CPAN] CPAN - Comprehensive Perl Archive Network
31.08.2004 <www.cpan.org >

[RPCVSDOC] RPC vs. Document WSDL encoding
31.08.2004 <http://www.rassoc.com/gregr/weblog/archive.aspx?post=465 >

[APALIZ] The Apache Software Foundation - Licenses
31.08.2004 <http://www.apache.org/licenses/ >

[NETCRAFT] Netcraft: Web Server Survey 31.08.2004
<http://news.netcraft.com/archives/2003/08/01/august_2003_web_server_survey.html
>

[JSP] JavaServer Pages Technology 31.08.2004 <http://java.sun.com/products/jsp/ >

[BIBIWSDLS] WSDL Spezifikationen der auf BiBiServ angeboteten WebServices
31.08.2004 <http://bibiserv.techfak.uni-bielefeld.de/wsdl/>

[BIBISERVSTATS] Statistiken des BiBiServ
31.08.2004 <http://bibiserv.techfak.uni-bielefeld.de/statistik/>

http://www.w3.org/DOM/
http://www-106.ibm.com/developerworks/library/wsasynch1/
http://www-106.ibm.com/developerworks/library/wsasynch1/
http://www-106.ibm.com/developerworks/library/wsasynch2/
http://www-106.ibm.com/developerworks/library/wsasynch2/
http://gridengine.sunsource.net/
http://gridengine.sunsource.net/project/gridengine-download/SGE53AdminUserDoc.pdf?content-type=application/pdf
http://gridengine.sunsource.net/project/gridengine-download/SGE53AdminUserDoc.pdf?content-type=application/pdf
http://www.w3.org/TR/xhtml1/
http://log4perl.sourceforge.net/
http://logging.apache.org/log4j/
file:www.cpan.org
http://www.rassoc.com/gregr/weblog/archive.aspx?post=465
http://www.apache.org/licenses/
http://news.netcraft.com/archives/2003/08/01/august_2003_web_server_survey.html
http://java.sun.com/products/jsp/
http://bibiserv.techfak.uni-bielefeld.de/wsdl/
http://bibiserv.techfak.uni-bielefeld.de/statistik/

22 Literaturverzeichnis

[BIBISERVPOLICIES] Policies of BiBiServ
31.08.2004 <http://bibiserv.techfak.uni-bielefeld.de/bibi/Administration_Policies.html
>

[BIBISERV] Technical Faculty of the University Bielefeld: The Bielefeld University Bioin-
formatics Server (BiBiServ)
31.08.2004 <http://bibiserv.techfak.uni-bielefeld.de/ >

[BIBISERV] Der BiBiServ (production system)
31.08.2004 <http://bibiserv.techfak.uni-bielefeld.de/ >

[BIBITEST] Der BiBiTest (development system)
31.08.2004 <http://bibitest.techfak.uni-bielefeld.de/ >

[BIBIWSAPI-WSS] BiBiWS server side API
31.08.2004 <http://bibiserv.techfak.uni-bielefeld.de/hobit/wss-api/ >

[BIBIWSAPI-WSC] BiBiWS client side API
31.08.2004 <http://bibiserv.techfak.uni-bielefeld.de/hobit/wsc-api.html >

http://bibiserv.techfak.uni-bielefeld.de/bibi/Administration_Policies.html
http://bibiserv.techfak.uni-bielefeld.de/
http://bibiserv.techfak.uni-bielefeld.de/
http://bibitest.techfak.uni-bielefeld.de/
http://bibiserv.techfak.uni-bielefeld.de/hobit/wss-api/
http://bibiserv.techfak.uni-bielefeld.de/hobit/wsc-api.html

	BiBiWS Development Guide
	Basics of a WebService
	Description of the project directory
	Project directory

	Brief introduction to the BiBiWS WebServices
	Installing and running the default WebService of a new project
	Server Side
	Client Side
	Install your WebService
	Testing your WebService

	Detailed introduction to the BiBiWS WebServices
	Server side of a BiBiWS tool
	Converting result from/to specified XMLSchemas
	Command line client for testing server side

	BiBiWS - Predefined statuscodes

